ADE7880
The VANOLOAD register usually contains the same value
as the APNOLOAD register. When APNOLOAD and
VANOLOAD are set to 0x0, the no load detection circuit
is disabled. If only VANOLOAD is set to 0, then the no load
condition is triggered based only on the total active power
being lower than APNOLOAD. In the same way, if only
APNOLOAD is set to 0x0, the no load condition is triggered
based only on the apparent power being lower than VANOLOAD.
Bit 0 (NLOAD) in the STATUS1 register is set when a no load
condition in one of the three phases is triggered. Bits[2:0]
(NLPHASE[2:0]) in the PHNOLOAD register indicate the state
of all phases relative to a no load condition and are set simulta-
neously with Bit NLOAD in the STATUS1 register. NLPHASE[0]
indicates the state of Phase A, NLPHASE[1] indicates the state
of Phase B, and NLPHASE[2] indicates the state of Phase C.
When Bit NLPHASE[x] is cleared to 0, it means the phase is out
of a no load condition. When set to 1, it means the phase is in a
no load condition.
Data Sheet
An interrupt attached to the Bit 1 (FNLOAD) in the STATUS1
register can be enabled by setting Bit 1 in the MASK1 register. If
enabled, the IRQ1 pin is set low and the status bit is set to 1
whenever one of three phases enters or exits this no load
condition. To find the phase that triggered the interrupt, the
PHNOLOAD register is read immediately after reading the
STATUS1 register. Then the status bit is cleared and the IRQ1
pin is set back high by writing to the STATUS1 register with the
corresponding bit set to 1.
No Load Detection Based on Apparent Power
This no load condition is triggered when no less significant bits
are accumulated into the apparent energy register on one phase
(xVAHR, x = A, B, or C) for a time indicated by the VANOLOAD
unsigned 16-bit register. In this case, the apparent energy of that
phase is not accumulated and no CFx pulses are generated based
on this energy.
The equation used to compute the VANOLOAD unsigned
16-bit value is
An interrupt attached to Bit 0 (NLOAD) in the STATUS1
register can be enabled by setting Bit 0 in the MASK1 register.
If enabled, the IRQ1 pin is set to low, and the status bit is set
VANOLOAD = 2 16 ?
Y × VATHR × 2 17
PMAX
(51)
to 1 whenever one of three phases enters or exits this no load
condition. To find the phase that triggered the interrupt, the
PHNOLOAD register is read immediately after reading the
STATUS1 register. Next, the status bit is cleared, and the IRQ1
pin is set to high by writing to the STATUS1 register with the
corresponding bit set to 1.
No Load Detection Based on Fundamental Active and
Reactive Powers
This no load condition is triggered when no less significant bits
are accumulated into the fundamental active and reactive energy
registers on one phase (xFWATTHR and xFVARHR, x = A, B,
or C) for a time indicated in the respective APNOLOAD and
VARNOLOAD unsigned 16-bit registers. In this case, the
fundamental active and reactive energies of that phase are not
accumulated and no CFx pulses are generated based on these
energies. APNOLOAD is the same no load threshold set for
the total active powers. The VARNOLOAD register usually
contains the same value as the APNOLOAD register. If only
APNOLOAD is set to 0x0, then the fundamental active power
is accumulated without restriction. In the same way, if only
VARNOLOAD is set to 0x0, the fundamental reactive power is
accumulated without restriction.
Bit 1 (FNLOAD) in the STATUS1 register is set when this no
load condition in one of the three phases is triggered. Bits[5:3]
(FNLPHASE[2:0]) in the PHNOLOAD register indicate the
state of all phases relative to a no load condition and are set
simultaneously with Bit FNLOAD in the STATUS1 register.
FNLPHASE[0] indicates the state of Phase A, FNLPHASE[1]
indicates the state of Phase B, and FNLPHASE[2] indicates the
state of Phase C. When Bit FNLPHASE[x] is cleared to 0, it
means the phase is out of the no load condition. When set to 1,
it means the phase is in a no load condition.
where:
Y is the required no load current threshold computed relative to
full scale. For example, if the no load threshold current is set
10,000 times lower than full scale value, then Y=10,000.
VATHR is the VATHR register used as the threshold of the first
stage energy accumulator (see Apparent Energy Calculation
section) PMAX = 27,059,678 = 0x19CE5DE, the instantaneous
apparent power computed when the ADC inputs are at full
scale. When the VANOLOAD register is set to 0x0, the no load
detection circuit is disabled.
Bit 2 (VANLOAD) in the STATUS1 register is set when this no
load condition in one of the three phases is triggered. Bits[8:6]
(VANLPHASE[2:0]) in the PHNOLOAD register indicate the
state of all phases relative to a no load condition and they are set
simultaneously with Bit VANLOAD in the STATUS1 register:
? Bit VANLPHASE[0] indicates the state of Phase A.
? Bit VANLPHASE[1] indicates the state of Phase B.
? Bit VANLPHASE[2] indicates the state of Phase C.
When Bit VANLPHASE[x] is cleared to 0, it means the phase is
out of no load condition. When set to 1, it means the phase is in
no load condition.
An interrupt attached to Bit 2 (VANLOAD) in the STATUS1
register is enabled by setting Bit 2 in the MASK1 register. If
enabled, the IRQ1 pin is set low and the status bit is set to 1
whenever one of three phases enters or exits this no load
condition. To find the phase that triggered the interrupt, the
PHNOLOAD register is read immediately after reading the
STATUS1 register. Next, the status bit is cleared, and the IRQ1
pin is set to high by writing to the STATUS1 register with the
corresponding bit set to 1.
Rev. A | Page 70 of 104
相关PDF资料
EVAL-ADE7953EBZ BOARD EVAL FOR ADE7953
EVAL-ADF4002EBZ1 BOARD EVAL FOR ADF4002
EVAL-ADG788EBZ BOARD EVALUATION FOR ADG788
EVAL-ADM1021AEB BOARD EVAL FOR ADM1021
EVAL-ADM1023EB BOARD EVAL FOR ADM1023
EVAL-ADM1031EB BOARD EVAL FOR ADM1031
EVAL-ADM1062TQEBZ BOARD EVALUATION FOR ADM1062TQ
EVAL-ADM1075CEBZ BOARD EVAL FOR ADM1075
相关代理商/技术参数
EVAL-ADE7880EBZ 制造商:Analog Devices 功能描述:ADE7880, ENERGY METER, 3 PH, SPI, I2C, E
EVAL-ADE7913EBZ 制造商:AD 制造商全称:Analog Devices 功能描述:3-Channel, Isolated, Sigma-Delta ADC with SPI
EVAL-ADE7953EBZ 功能描述:BOARD EVAL FOR ADE7953 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADF4001EBZ2 制造商:Analog Devices 功能描述:Evaluation Board For Pll Frequency Synthesizer 制造商:Analog Devices 功能描述:ADF4001 PLL SYNTHESIZER EVAL BOARD
EVAL-ADF4002EB1 制造商:Analog Devices 功能描述:EVAL BOARD - Bulk
EVAL-ADF4002EBZ1 功能描述:BOARD EVAL FOR ADF4002 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- 主要目的:电源管理,电池充电器 嵌入式:否 已用 IC / 零件:MAX8903A 主要属性:1 芯锂离子电池 次要属性:状态 LED 已供物品:板
EVAL-ADF4007EBZ1 功能描述:BOARD EVALUATION FOR ADF4007EB1 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADF4106EB1 制造商:Analog Devices 功能描述:PLL, Frequency Synthesizer